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Magnetic Resonance Imaging (MRI) techniques provide non-invasive methods for the highly 

accurate anatomic depiction of the heart and vessels. The intrinsic motion sensitivity of MRI 

can be used to image vessels as in phase contrast (PC) MR-angiography or to quantify blood 

flow and motion of tissue
12

. Such techniques offer the unique possibility to acquire spatially 

registered functional information simultaneously with the morphological data within a single 

experiment
3
. To synchronize flow or motion sensitive measurements with periodic tissue 

motion or pulsatile flow, data acquisition is typically gated to the cardiac cycle and time 

resolved (CINE) anatomical images are collected to depict the dynamics of tissue motion and 

blood flow during the cardiac cycle
4
. Visualization and quantification of blood flow and tissue 

motion using PC MRI has been widely used in a number of applications. Characterization of 

the dynamic components of blood flow and cardiovascular function provide insight into 

normal and pathological physiology
56

. 

 

Traditionally, MRI imaging of flow is accomplished using methods that resolve two spatial 

dimensions (2D) in individual slices. Alternatively, 3D spatial encoding offers the possibility 

of isotropic high spatial resolution and thus the ability to measure and visualize the temporal 

evolution of complex flow and motion patterns in a 3D-volume. In this context, ECG 

synchronized flow sensitive 3D MRI using 3-directional velocity encoding (also termed 'flow 

sensitive 4D MRI' or 'time-resolved 3D velocity mapping') can be employed to detect and 

visualize global and local blood flow characteristics in targeted vascular regions (aorta, 

cranial arteries, carotid arteries, etc.)
7
 Due to the acquisition of at least four data sets for three-

directional velocity encoding, phase contrast MRI inherits a trade-off between 

spatial/temporal resolution and total scan time. For thoracic and abdominal applications 

respiration control (e.g. navigator gating for 3D methods) can therefore be necessary to avoid 

breathing artifacts
8
.  

Several effects can introduce imperfection in the resulting flow sensitive 4D MRI data, which 

cause errors in velocity measurements. Major sources of inaccuracy in velocity encoded 

images include eddy current effects, Maxwell terms, gradient field distortions, and velocity 

aliasing
9 10

. Any further data analysis is therefore typically preceded by pre-processing 

strategies including eddy current and Maxwell correction, noise filtering, application of anti 

aliasing algorithms, etc.
1112

. 

For the subsequent analysis and visualization of complex, three-directional blood flow within 

a 3D volume, various visualization tools including 2D vector-fields, 3D streamlines and time-

resolved 3D particle traces have been proposed
13

. Several groups have reported advances in 

the application of flow sensitive 4D MRI including the analysis of blood flow through 

artificial valves
14

, ventricular and atrial flow patterns
1516

, blood flow characteristics in the 

thoracic aorta
17181920

, peripheral vessels
21

, carotid arteries
22

, large intracranial arteries
2324

, as 

well as flow in the pulmonary and venous systems
2526

.  

Moreover, since flow sensitive 4D MRI data reflects the true underlying time-resolved blood 

flow velocity vector field, it is possible to quantify the directly measured (e.g. flow rates) or 

derived parameters such as pressure difference maps
27

, wall sheer stress
28

, pulse wave 

velocity
29

, and others. Findings in recently reported studies combining the complete spatio-

temporal coverage of flow-sensitive 4D MRI and advanced quantification strategies are 

promising and may help to define new clinical markers for the improved characterization of 

cardiovascular disease. Examples include relative pressure mapping within the heart and 
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aorta
30

 or renal arteries
31

, wall shear stress analysis in the thoracic aorta
32

, or assessment of 

onset and dynamics of regional turbulence in the aorta
33

 .  

A representative data acquisition and data analysis strategy for the 3D visualization of blood 

flow characteristics as well as regional quantitative evaluation of flow and wall parameters is 

illustrated in the figure below.   

 

 
 
Figure: Data acquisition and processing chain for flow sensitive 4D MRI in the aorta using adaptive navigator 

gating and prospective ECG gating. The late diastolic navigator signal (NAV) of the lung–liver interface is used 

to gate the acquisition and define the k-space location of the phase encoding step used in the next cardiac cycle. 

For each time frame three-directional blood flow velocities (vx, vy, and vz) are collected in an interleaved manner. 

Pre-processing of the resulting data (anatomical 3D CINE images and three-directional velocity data) is 

performed to correct for measurement inaccuracies and reduce noise. Subsequent 3D blood flow visualization 

permits the depiction of time-resolved 3D vascular hemodynamics within the entire thoracic aorta (here: systolic 

3D stream lines inside time-averaged 3D-PC-MRA iso-surface which can be derived from the flow-sensitive 4D 

data and used as anatomical orientation). Quantitative analysis of blood flow and vessel wall parameters such as 

segmental wall shear stress can be performed in user selected 2D planes at any location along the vascular tree.  

 

A disadvantage of phase contrast MRI is related to the need for multiple acquisitions for 

encoding a single velocity direction, resulting in long scan times. New methods based on the 

combination of phase contrast MRI and fast sampling strategies, e.g. radial imaging with 3D 

PC-VIPR, have been reported and are promising for further reduction in total scan time and/or 

increased spatial or temporal resolution
34

. In addition, the total acquisition time or temporal 

and spatial resolution associated with a specific MR technique may be further improved by 

using new spatio-temporal imaging acceleration
3536

 and/or partial k-space update methods 

(view sharing)
37

. 

In summary, a number of recent studies indicate the potential of flow sensitive 4D-MRI for 

the detailed visualization of complex flow patterns associated with healthy and pathologic 

hemodynamics. The nature of such datasets (3 spatial dimensions, 3 blood flow velocity 

directions and time) points towards the potential of flow-sensitive 4D MRI to provide detailed 

quantitative flow and vessel wall parameters with complete vascular coverage.  
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